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Collapse arresting in an inhomogeneous two-dimensional nonlinear Schro¨dinger model
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Collapse of (211)-dimensional beams in the inhomogeneous two-dimensional cubic nonlinear Schro¨dinger
equation is analyzed numerically and analytically. It is shown that in the vicinity of a narrowattractive
inhomogeneity, the collapse of beams that in a homogeneous medium would collapse may be arrested under
certain circumstances.
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I. INTRODUCTION

In the framework of the nonlinear Schro¨dinger equation
~NLSE! or alternatively denoted the Gross-Pitaevskii eq
tion in Bose-Einstein condensation~BEC!, the interaction of
excitations with potentials has attracted significant inter
during recent years. Due to the universality of the NLSE
the context of weakly nonlinear dispersive media, these f
damental investigations apply to such diverse phenonem
light beams trapped in waveguides@1,2#, molecular excita-
tions in the vicinity of inhomogeneities@3#, and Bose-
Einstein condensation@4,5#. In this paper, the investigation
are based on the following variant of the NLSE:

i ]zc1¹'
2 c1ucu2c1V~rW !c50, ~1!

wherec[c(rW,z) is the complex amplitude of the quasim
nochromatic wave train~the condensate wave function
BEC!, ¹'

2 5]x
21]y

2 is the two-dimensional Laplace operat
accounting for diffraction, z is the propagation variable~the
time variable in BEC! andrW5(x,y) is the spatial coordinate
The nonlinear term in Eq.~1!, ucu2c, characterizes the non
linear properties of the system; light intensity-dependent
fractive index in optics, the interaction between Bos
particles in BEC. Finally, the potential,V(rW), e.g., represents
a space-dependent linear refractive index of an optical
dium, a confining applied field in BEC, or a material inh
mogeneity in the theory of trapped molecular excitations
the present paper, we restrict ourselves to consider a
attractive potential that decays monotonically as a funct
of the distance from the centerrW50W of the rW plane. In physi-
cal systems where an excitation is located in the vicinity o
smooth bell-shaped potential whose width is much lar
than the width of the excitation, one may approximate
potential by a parabola. Many important results relating
the dynamics of excitations in the vicinity of parabolic p
tentials have been obtained. For a short summary and r
ences to these works, see our previous paper@6#. However,
the parabolic approximation breaks down when the widths
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the potential and the excitation are of comparable size. In@6#
we used the one-dimensional~1D! quintic NLSE to model
the propagation of 1D ‘‘beams’’ in the presence of a narr
attractive potential. Similar to the cubic NLSE, the quin
NLS model has a threshold for collapse. We launched a
percritical beam into the model and varied the initial distan
R0 between beam and potential. For large values ofR0, the
interaction of beam and potential was found to be negleg
and the beam collapsed as expected. Collapse was also
served for small initial distances; here, the effect of the p
tential was to shorten the propagation distance needed f

collapse to occur compared to the homogeneous case@V(rW)

50W #. However, it was observed that the collapse could
arrested ifR0 lay in a certain interval. In this case, the bea
acceleration induced by the potential was strong enoug
separate the beam into radiation and a noncollapsing
oscillating in the potential.

In this paper, we extend the previous 1D investigations
the physically more relevant cubic NLSE and obtain quali
tively similar results for rectilinear motion of the 2D beam
the transverse plane. However, we also present new man
tations of the collapse arresting due to the two degrees
freedom in the transverse plane of the cubic NLSE. In p
ticular, we demonstrate how the collapse of a supercrit
beam may also be arrested for circular motion of the be
center around the potential.

The paper is organized as follows. In Sec. II, we introdu
the model and describe its basic properties in the homo
neous case before discussing the numerical results obta
when a potential is included in the model. In Sec. III, w
address the problem analytically. Using a certain coordin
transformation enables us to calculate energy radiation f
the beam using methods developed to characterize the
neling of probability density in linear quantum-mechanic
systems. Finally, Sec. IV summarizes our results.

II. MODEL AND NUMERICAL RESULTS

To model the propagation of a (211)-dimensional exci-
tation,c(x,y,z), which we in the following shall refer to as
a beam, we use the NLSE as given by Eq.~1! where c

[c(rW,z), rW5(x,y) is the transverse coordinate,¹'
2 5]x

2

1]y
2 is the Laplacian governing diffraction in the transver

plane, andz measures propagation length. In the homog

s,
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neous case@V(rW)50#, Eq. ~1! has stationary solutions of th
form

c~x,y,z!5C~x,y,L!eiLz, ~2!

where the real shape functionC(x,y,L) satisfies the equa
tion

]2C~x,y,L!

]x2
1

]2C~x,y,L!

]y2
1C3~x,y,L!2LC~x,y,L!

50. ~3!

From Eq.~3!, the well-known family of self-similar station
ary solutions@7#

C~x,y,L!5AL

L0
C0SAL

L0
x,AL

L0
y,L0D , ~4!

appears, once one solution,C0 with frequencyL0, has been
found. It then follows that the massN of the stationary solu-
tions

N~L!5E
2`

` E
2`

`

uC~x,y,L!u2dx dy ~5!

is independent ofL and has a value, which by means
numerical methods, may be evaluated toN(L)5Nc511.69.
According to the Vakhitov-Kolokolov criterion@8#, the
L-independent norm implies marginal stability of the s
tionary solutions; i.e., if a stationary solution is perturb
such thatN.Nc , a singularity in ucu appears after finite
propagation length. On the other hand,c cannot remain lo-
calized if N,Nc and ultimately disperses completely.

We restrict ourselves to initial conditions of the form

c~x,y,z50!5A expS 2
urW2RW 0u2

2w2
2 ibW •~rW2RW 0!D , ~6!

whereRW 0 is the center of the beam atz50 andbW controls the
initial ‘‘velocity’’ of the center. When the massN5pA2w2

approximates the ground-state massNc511.69, the Gaussian
initial conditions approximate a member of the self-simi
solution family in Eq.~4! fairly well. This is indeed the case
for the valuesA52, w50.975 (N511.95), which are used
in all numerical calculations. In Appendix A, we use
Crank-Nicholson finite-difference scheme with an adapt
integration step on a nonuniform grid to determine the pro
gation distancez0 needed for a blow up to occur in the ho
mogeneous case@V(rW)50#. For the values ofA andw listed
above,z0 is found to be 5.45.

For the potentialV(rW) we use a smoothed version of th
circular step potential

V~rW !5eu~a2urWu!, ~7!
06661
-

r

e
-

whereu is the Heaviside step function ande and 2a are the
height and diameter of the potential, respectively. To mon
how the center of the beam evolves from its initial positi
RW 0 we use the centroid

RW ~z!5
1

NE2`

` E
2`

`

rWuc~x,y,z!u2dx dy. ~8!

Using Eqs.~1! and ~8!, the well-known expression for the
second derivative of the centroid appears

RW zz~z!5
2

NE2`

` E
2`

`

¹'V~x,y!uc~x,y,z!u2dx dy. ~9!

Insertion of Eq.~6! into Eq. ~9! yields

RW zz~z50!5
4A2

Nw2E2`

` E
2`

`

dx dy

3H ~rW i2RW 0!V~x,y!expS 2
urW2RW 0u2

w2 D J ,

~10!

where rW has been decomposed into the two componentrW i

and rW' , which are parallel and perpendicular toRW 0, respec-
tively. Noting that the potentialV(x,y) holds the largest val-
ues in the half plane whererW i points in the opposite direction
of RW 0 , RW zz(z50) is seen to point towards the center of t
potential,rW50, for the Gaussian initial conditions employe
here. As in our previous paper@6#, we aim to illustrate how
the beam may be separated into radiation and a noncoll
ing core, due to the attraction towards the interior of t
potential. To meet this end, we divide the numerical calcu
tions into the following two groups that give a broad repr
sentation of the possible scenarios of beam/potential inte
tion, without exhausting all types of initial configuration
implied by Eq.~6!:

~1! Rectilinear motion: the beam is initially placed at no
zero distance (uRW 0u.0) from the center of the potentialrW

50W with zero velocity @RW z(z50)50W # in the transverse
plane.

~2! Orbital motion: the beam is initially placed at nonze
distance (uRW 0u.0) from the center of the potentialrW50W with
the velocity vectorRW z(z50) being perpendicular toRW 0.

Initial conditions belonging to the first group ar
‘‘pseudo-2D’’ and resemble the quintic case@6#, whereas the
second group fully exploits the two degress of freedom in
transverse plane. Figure 1 shows the result of a numer
calculation belonging to the first category. A beam charac
ized byA52, w50.975, bW 50W , and uRW 0u50.75 is launched
into a potential withe and a given by 1 and 1.25, respec
tively. In Fig. 1~a!, the evolution of they50 cross section of
ucu, uc(x,y50,z)u, is plotted. We observe how the bea
initially focuses as it is accelerated towards the center of
4-2
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FIG. 1. The following initial conditions forc

are used:c(x,y,z50)5Aexp„2 urW2RW 0u2/2w2

2 ibW •(rW2RW 0)…, where A52, w50.975, bW 50W

and uRW 0u50.75. The half diametera and the
heighte of the potential are given by 1.25 and 1
respectively. In~a!, the propagation of they50
cross section ofucu, uc(x,y50,z)u, is plotted for
dimensionless units ofucu, z, andx. In ~b!, eight
contour plots depict the propagation ofc. The
following contour levels are used: ucu
50.4,- 0.8, 1.1, 1.5, 1.9, 2.3, 2.7, 3.0. The pote
tial is indicated by a dashed circle and .
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potential rW50W . However, the beam amplitude ceases to
crease at some point and instead undergoes moderate
lations. In Fig. 1~b!, the propagation ofc is shown in con-
tour plots for different values ofz. Eight different contour
levels are used to render the beam, and a dashed circle
cates the potential. Few visible contour levels thus co
spond to low-beam amplitudes whereas more levels are
dered for higher amplitudes. From the contour plots, it
evident how the beam even atz542, almost eight timesz0,
shows no signs of approaching a collapse. Moreover,
observe how the beam profile remains almost circu
through the oscillations in amplitude and width. In order
gain insight into how the beam propagation changes as fu
tion of the initial position of the centroidRW 0, we fix A, w, bW ,
e, anda at the values listed above and varyRW 0 ~Figs. 2, 3, 4!.
For the numerical calculation shown in Fig. 2, whereuRW 0u
50.5, we observe how the beam amplitude increases fro
to approximately 15 in roughly 1.5 propagation units. With
the validity of the employed split-step integration schem
this is indicative of a blow up, and no stabilized propagat
is thus observed foruRW 0u50.5. In Fig. 3, the beam is initially
positioned atRW 05(1.5,0) and similar to Fig. 1 oscillations i

FIG. 2. Same as Fig. 1~a! with uRW 0u50.5.
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the beam amplitude pastz0 are observed. Finally, Fig. 4 de
picts the result of a calculation withuRW 0u55.0. In this case,
the overlap between potential and beam is very little a
accordingly, the beam undergoes critical self-focusing as
the homogeneous case.

When performing numerical calculations with orbital m
tion, we borrow concepts from celestial mechanics. Fo
planet moving in a circular orbit, the magnitude of the acc
erationaorb is related to the radius of the orbitRorb and the
magnitude of the velocityvorb according to

aorb5
vorb

2

Rorb
. ~11!

In the present context of an orbiting beam, Eq.~11! translates
into

uRW zz~z50!u5
uRW z~z50!u2

uRW 0u
. ~12!

For fixed values of A, w, e, and a, Eq. ~9! gives
uRW zz(z50)u as a function ofuRW 0u. As RW z(z50)522bW for
the initial condtions in Eq.~6!, Eq. ~12! then determines the

FIG. 3. Same as Fig. 1~a! with uRW 0u51.25.
4-3
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bW vector required for a circular orbit as a function of th
other initial parameters. In order to investigate whether s
tained circular beam motion is possible, we perform a se
of numerical calculations for varying initial parameters a
different potential characteristics. In Fig. 5, eight conto
plots depictucu as a function ofz for initial parameters given
by A52, w50.975, uRW 0u51.5, andbW 5(0,20.562). These
initial parameters obey the relation Eq.~12! above, and we
observe how the beam orbits one round fromz50 to z56
with a fairly constant shape—contour levels appear roug
as circles. However, afterz56, the beam profile starts ge
ting somewhat distorted and the beam center moves from
boundary of the potential towards the interior. As in Figs
and 3, we observe how the beam propagates without
proaching a collapse. However, in contrast to the scenari
rectilinear motion, the stabilization is not caused by a ra
change in the magnitude of the centroid. On the other ha

FIG. 4. Same as Fig. 1~a! with uRW 0u55.0.

FIG. 5. Same as Fig. 1~b! with bW 5(0,20.562), uRW 0u51.5, and
contour levels given byucu50.3, 0.7, 1.0, 1.7, 2.1, 2.4, 2.8.
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the centroid acceleration is in the present case almost so
due to a change in the direction of the centroid vectorRW 0. In
Fig. 6, we change the initial conditions slightly in order
investigate how the beam propagation depends onbW . The
relation Eq.~12! is not used in this case, and instead, t
magnitude of thebW vector is increased from 0.562 to 0.7
while all other parameters are as listed above in the con
of Fig. 5. As is visible from the first four subplots in Fig. 6
the beam profile is first distorted severely, followed by
separation process where the beam is divided into a core
trapped at the center of the potential and radiation esca
from the potential. This is evident atz59 andz510.5 where
the orbitting motion has stopped and the beam and pote
centers approximately coincide. A distorted beam profile
also observed if we again use Eq.~12! to calculatebW from the
other initial parameters whose values are now given byA

52, w50.975, uRW 0u52.0. The increase in the magnitude
the initial centroid vector leads to unstable orbitting moti
with a clear separation of the beam into a core and radia
~not shown!. Finally, a calculation is performed with th
same initial parameters as in Fig.~5! apart from a wider
potential. According to Eq.~9!, Eq. ~12! holds fora51.25 as
well as a52.1 if A52, w50.975, bW 5(0,20.562), uRW 0u
51.5, ande51. Results are shown in Fig. 7 where we no
how orbiting motion on the inside of the wide potential
significantly more stable compared to propagation on
outside of the narrow potential shown in Fig. 1. The calc
lation is continued untilz545 ~almost 4.5 times the propa

FIG. 6. Same as Fig. 1~b! with bW 5(0,20.7), uRW 0u51.5, and
contour levels given by ucu50.2, 0.4, 0.6, 0.9, 1.1, 1.3, 1.5
1.7, 1.9, 2.2
4-4
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COLLAPSE ARRESTING IN AN INHOMOGENEOUS TWO- . . . PHYSICAL REVIEW E 64 066614
gation length from Fig. 5! and not even at this point does th
beam show signs of significant distortion. The beam pro
visible in the contour plots does in fact appear to be circ
like through all stages of propagation. Moreover, the orbit
motion is accompanied by oscillations in the amplitude a
width of the beam that decrease in strength through
propagation.

In conclusion, we have for a variety of initial condition
demonstrated how an initially super-critical beam may
separated into radiation and a noncollapsing core. We rel
physical arguments in concluding that the core mass mus
below the critical valueNc511.69 required for self focusing
from various theoretical studies~see, e.g.,@9#!, attractive po-
tentials, as the one in Eq.~7!, are known to support station
ary solutions having subcritical masses. As the noncollaps
beams propagate with moderate oscillations in the wid
amplitude, and centroid for large values ofz @see, e.g., Fig.
~1!#, we expect the core to approximate one of the station
solutions reasonably well, and thus to have a subcrit
mass. Trying to calculate the core mass exactly would
ambiguous, since the boundary between core and radiatio
not well defined. Indeed, positioning the boundary too
from the center of the potential would yield a super-critic
value of the core mass.

In the following Sec. III, where the numerically observe
phenomena are subject to analytical treatment, the bea
decomposed into radiation and a self-similar core with va
ing mass. In doing so we obtain a qualitative explanation
the collapse arresting.

III. ANALYTICAL RESULTS

In order to give an analytical description of the proce
we generalize the approach that was used in our prev

FIG. 7. Same as Fig. 1~b! with bW 5(0,20.562), uRW 0u51.5, a
52.1, and contour levels given byucu50.7, 1.4, 2.1, 2.7,
3.4, 4.1, 4.8, 5.5.
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paper where we investigated collapse arresting in a o
dimensional inhomogeneous quintic nonlinear Schro¨dinger
model@6#. First, we introduce the transformation to the no
inertial frame of reference in which the centroid of the bea
is at rest. Thus,

c~rW,z!5f~rW ,z!expS ikW~z!rW1 i E
0

z

kW2~z8!dz8D , ~13!

whererW 5rW2RW (z) is the transversal coordinate in the fram

of reference, andkW (z)5(1/2)RẆ is the momentum canonically
conjugated to the centroid coordinate~Overdot denotes the
derivatived/dz). In the frame of reference Eq.~1! takes the
form

i fz1¹rW
2
f1ufu2f1V@rW 1RW ~z!#f2

1

2
RẄ rW f50. ~14!

The centroid coordinateRW (z) satisfies the equation

1

2
RẄ 5

1

NE2`

`

uc~rW,z!u2¹ rWV~rW !drW. ~15!

The fourth term in the left-hand side of Eq.~14! describes
the influence of the linear potential in the frame of referen
while the fifth term represents the inertial force work. It
worth noticing that due to Eqs.~14! and ~15!, the function
f(rW,z) should satisfy the following compatibility condition

E
2`

`

rWuf~rW,z!u2dx50. ~16!

Using the lens transformation, used in the homogene
case in@10#

f~rW ,z!5
1

L~z!
F~jW ,z!expS i z1 i

L̇

L~z!

r2

4
D , ~17!

wherer5urW u, L(z) is the beam width, and independent va
ables are defined as

jW5
rW

L~z!
, ż5

1

L2~z!
, ~18!

we obtain from Eq.~14! the equation for the shape function
F(jW ,z), in the form

i Fz1¹jW
2
F1uFu2F2F2L2U~jW !F50, ~19!

where

U~jW !52
1

4
j2b~z!/L21eF~jW ,L,RW !, ~20!

and

eF~jW ,L,RW !5
1

2
LRẄ jW2V~L jW1RW ! ~21!
4-5
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with

L̈ L352b~z!. ~22!

U(jW ) represents the influence of inertial forces~the cen-
trifugal potential 2(1/4)b(z)j2/L2 and the potential

(1/2)L RẄ jW of accelerated centroid motion! and of the poten-
tial @2V(LjW1RW )#, not found in the homogeneous case,
the beam dynamics. WhenL(z) is known, Eqs.~15!, ~19!
and ~20! describe the beam evolution.

Let us consider the beam evolution in the presence of
linear potentialV(rW). Basically, one may distinguish two dif
ferent types of inhomogeneities: broad inhomogeneities
narrow ones. In the case of broad inhomogeneities, i.e., w

LU¹ rWV~rW !

V~rW !
U!1, ~23!

the inhomogeneity potentialV(rW) is a smooth function and
its Taylor expansion may be used. The case of parab
potentialV(rW) was studied in Refs.@2,3#. It was shown that
the attractive parabolic potential stabilizes subcritical bea
(N,Nc) but facilitates the collapse of super-critical (N
.Nc) beams. In the case when the characteristic length s
of inhomogeneity is comparable with the width of the bea

LU¹ rWV~rW !

V~rW !
U>1, ~24!

the polynomial approximation is no longer valid. As in o
previous paper@6#, we assume that the inhomogeneity pote
tial ~7! is weak (e!1) and super criticality is small: the mas
of the beam only slightly exceeds the critical value, i.e.,N
2Nc)/Nc!1.

The functionf(rW ,z) which describes the beam dynami
in the noninertial frame of reference may be represented

f~rW ,z!5H fs if urW u<jsL~z!,

fo if urW u.jsL~z!,

wherefs is the inner core function,fo is its outer part.js
@1 is a constant that characterizes the size of the beam.
mass of the inner core of the beam~in what follows we will
call this part of the beam mass ‘‘the core mass’’! is

Ns5E
urW u<jsL(z)

uf~rW,z!u2drW 5E
ujW u<js

uF~jW ,z!u2djW .

~25!

Using the solvability condition for the asymptotic expansi
of the self-similar shape functionF(jW ,z) ~@11–16,6#! we
obtain the following equations for the centroidRW (z) and the
width L(z) motion:

1

2
NcRẄ 2¹RW V ~L,RW !50 ~26!
06661
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L̈52
v

L3
1

1

2M

]

]L
V ~L,RW !. ~27!

Here,

v5
Ns2Nc

M
~28!

is the excess core mass above the critical,

V~L,RW !5
1

L2E2`

`

V~rW !C2S urW2RW u
L

D dx dy ~29!

is an effective potential caused by the presence of the lin
potentialV(rW) whereC(j) is the so-called ground state o
Townes soliton that is the nodeless solution of the equat

d2C~j!

dj2
1

1

j

dC~j!

dj
1C3~j!2C~j!50,

dC~j!

dj U
j50

50,

C~j!→0 for j→`. ~30!

It is worth noting that the Townes soliton is the radial
symmetric solution to Eq.~3!.

The Townes soliton has a critical mass

2pE
0

`

C2~j!j dj5Nc.11.7, ~31!

and in the homogeneous case@V(rW)50# its HamiltonianH
50. The quantity

M5
1

4E ujW u2C2 djW'3.4 ~32!

is the second moment of the Townes soliton. Equation~26!

coincides with Eq.~15! if c(rW,z) in this equation is the
Townes soliton.

Equations~26! and~27! describe the beam dynamics~sub-
critical beams for beams forv,0 and super-critical beam
for v.0) in the adiabatic approximation when the mass
the beam is assumed to be constant (v̇50) @18#. This ap-
proximation is too crude, however, and is not sufficient in t
case under consideration because as it is seen from th
sults of numerical simulations, the beam evolution is acco
panied by a radiation.

We shall obtain an equation forNs(z) by considering the
radiation rate for the core mass. For this purpose, it is c
venient to rewrite Eqs.~19! and ~20! as the Schro¨dinger
equation

iFz52¹j
2F1U~jW !F,
4-6
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U~jW !512
1

4
bj21

1

2
L3RẄ jW2L2V~LjW1RW !2uFu2. ~33!

The shape of the potentialU(jW ) for the case when the inho
mogeneity potentialV(rW) is a rectangular potential well i
given by Eq. ~7!. The potential energy of inertial force

@(1/4)bj2 and (1/2)L3RẄ jW # makes the functionU(j) un-
bounded from below, and as a result, the motion of a part
in this potential becomes infinite. We are interested in
solutions of Eq.~33! under the boundary condition that th
waves are outgoing atj→`. With this boundary condition
the problem~33! is no longer self adjoint~see a very lucid
discussion of this subject for a closely related problem
@17#!. The eigenvalues may have a finite imaginary part t
gives the rate of radiation losses.

In the case of the immobile beam placed in the cente
the well ~7!, the potentialU is radially symmetric and outgo
ing radiation waves are also radially symmetric. Howev

the accelerated center of motion potential@(1/2)L3RẄ jW # sig-
nificantly modifies the potential profileU(jW ), making the
profile asymmetric and facilitating the escape in the direct

of the inertial forceRẄ .
The evolution of the core massNs(z) is governed by the

equation

Ṅs52
g

L2
Ns , ~34!

or in terms of the excess mass~28!

v̇52
g

L2 S Nc

M
1v D . ~35!

The derivation of the expression for the radiation rateg is
rather cumbersome and is given in Appendix B. Here
present only the final result. The raditation rateg may be
represented as the sum

g5u~b!g11u~2b!g2 , ~36!

where the radition rates for positive centrifugal coefficie
(g1) and negative centrifugal coefficient (g2) have the
form

g15
b1/4

4
Ap~q211!

2q
erfS mb1/4

~q211!

A2q
D

3expH 2
2

Ab
F ~q211!arccosS q

Aq211
D 2qG J

1
Ab

2~q211!~m1sinhm!

3FexpH 2p
q211

Ab
J

06661
le
e

n
t

f

r,

n

e

t

2expH 22
q211

Ab
Fp

2
1S 11

m

sinh~m! D
3arcsinS q

Aq211
D G J G, ~37!

g25u~q221!
ubu1/4

4
A p q3

2~q221!
erfS pA q221

2 qAubu
D

3expF2 2

Aubu
S q2~q221!arcsinhF 1

Aq221
G D G,

~38!

and

g5
ApL3uRẄ u

2
expH 2

8

3LuRẄ u
J when b50. ~39!

Here, erf(x) is the error function@19,20# and the notations

q5
uRẄ uL3

2Aubu
, m5

2A3q

A2q213
~40!

are used.
The set of Eqs.~26!, ~27!, and ~35! together with the

expressions

b5v2
L3

2M

]V
]L

,

q5
L3

NcAubu
u¹RW Vu, ~41!

for the centrifugal and inertial coefficients describes t
beam dynamics beyond the adiabatic approximation. The
act analytic expression for the Townes soliton is unknow
Therefore, we use its Gaussian approximation in the form

Cg~j!5A Nc

pB2
expH 2

j2

2B2J , ~42!

whereB250.8. Inserting Eq.~42! into Eq. ~29!, we obtain
that in the case of the rectangular well inhomogeneity pot
tial V(rW) given by Eq.~7! and the Townes soliton given b
Eq. ~42!, the effective potential has the form

V~L,RW !5
5Nc

2L2E0

a

rI 0S 5rR

2L2 D expH 2
5

4

r 21R2

L2 J dr,

~43!

whereR5uRW u andI n(x) is the modified Bessel function@19#.
We solve numerically the set of Eqs.~26!, ~27!, and ~35!

which for the effective potentialV(L,RW ) given by Eq.~43!
take the form
4-7
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RẄ 52
5 a e

L2
I 1S 5 a R

2 L2 D expH 2
5

4

a21R2

L2 J RW

uRW u
, ~44!

L̈52
v

L3
2

9 a e

2 L3 Fa I0S 5 a R

2 L2 D 2R I1S 5 a R

2 L2 D G
3expH 2

5

4

a21R2

L2 J , ~45!

v̇52
g

L2
~3.41v !. ~46!

The parameters used are

v~0!50.01, e50.1, a51,

L~0!52, L̇~0!50. ~47!

We study both types of centroid motion: rectilinear moti
and orbital motion.

Rectilinear motion.We investigate the beam dynamics f
the following four initial conditions:

Ẋ~0!50, X~0!51, 2.5, 4, 5,

Ẏ~0!50, Y~0!50.

The results of the simulations are presented in Figs. 8–11
is seen for a given degree of super-criticalityv and strength
of the inhomogeneitye, the beam evolution depends on th
initial distance between the beam and the center of the in
mogeneity potential. Beam collapses when its centroid is
ther too close to the inhomogeneity@X(0)51# or too far
away from it @X(0)55#. Collapse arresting and stabilizin
of the excitation takes place forX(0)52.5 while for X(0)
54 the excitation disperses. These results are in qualita
agreement with numerical studies presented in the prev
section. It is also worth noting their close relation to t
results obtained in Ref.@6# for the one-dimensional quintic
nonlinear Schro¨dinger equation.

Orbital motion. Being interested in the case when t
beam is orbiting around the center of inhomogeneity, it
convenient to introduce the polar centroid variables:RW
5R(cosx,sinx). In terms of these variables, Eq.~44! takes
the form

R̈5
m2

R3
2

5 a e

L2
I 1S 5 a uRW u

2 L2 D expH 2
5

4

a21uRW u2

L2 J ,

R2ẋ5m, ~48!

where the conserved quantitym is the orbital momentum. In
our simulations of Eqs.~45!, ~46!, and ~48! we usedm
50.1 and the following initial conditions

Ṙ~0!50, R~0!52, 3, 5.
06661
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The results of our calculations are presented in Figs. 12–
Like in the case of the rectilinear motion, the beam collap
when it is either too close or too far away from the center
the inhomogeneity. But it survives when the radiation effe
are strong enough to get rid of an excess mass. In our ca
happens when the center of beam is initially atR(0)53.

It is worth stressing that the role of inertial forces in th
tunneling effects here is crucial: in the vicinity of inhomog

neity, the inertial forces (RẄ andb) are significant, the radia
tion rate increases, and therefore the mass of the beam
creases withz (Ns5Nc1Mv). Our results show also that th
centroid motion and variations of the width of the beam a
its mass are obviously correlated.

IV. SUMMARY

In this paper, we have studied the interaction of exci
tions and potentials in the framework of the 2D cubic no
linear Scro¨dinger equation. In particular, it has been show
how the critical self focusing of an excitation~beam! whose

FIG. 8. The half diametera and the heighte of the potential are
given by 2 and 0.1, respectively. The following initial condition

for X, Ẋ, Y, Ẏ, L, L̇, and v are used:X(0)51, Ẋ(0)50, Y(0)

50, Ẏ(0)50, L(0)52, L̇(0)50, andv(0)50.01. In the upper
figure, the inverse width squaredB51/L2 is shown as function ofz
in dimensionless units. In the middle figure, thex componentX of
the centroid is depicted, and finally, the lower figure shows thz
dependence ofv in dimensionless units.
4-8
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mass is above the threshold for collapse, may be arre
when propagating in the vicinity of a narrow attractive p
tential. This phenomenon is clearly evident from a series
numerical experiments, divided into two groups characte
ing the type of beam motion in the transverse plane perp
dicular to the direction of propagation; rectilinear motio
where the beam center is limited to motion on a straight l
through the center of the potential and orbital motion wh
the beam center moves in circlelike orbits. For both types
beam motion, numerical calculations showed that osci
tions in beam amplitude, width, and center follow the arr
of critical selffocusing. The origin of the observed pheno
enon is ascribed to the acceleration of the beam cente
duced by the potential, either the magnitude of the cen
~rectilinear motion! or the direction~orbital motion!. We em-
ployed methods from linear quantum mechanics to und
stand the collapse arresting. Using two transformations, fi
a moving frame of reference centered at the beam cent
introduced and second, the lens transformation is used,
ables us to calculate the radiation of ‘‘mass’’ from the bea
In qualitative agreement with the numerically obtained
sults, the analytical appoach establishes a relation betw
the acceleration of the beam center and the collapse dyn
ics. Indeed, it is shown how ‘‘mass radiation’’ may bring th
beam mass below the threshold for collapse when the b
is subject to strong acceleration in the potential. Howev
whereas the analytical approach explains the observed
nomenon in clear intuitive terms, it is not suited for quan
tative studies of how the beam propagation depends on v

FIG. 9. Same as Fig. 8 withX(0)52.5.
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ous initial parameters. To meet this end, one must resolv
numerical calculations. Two main reasons for the lack
quantitative agreement may be underlined: first, at lead
order, it is assumed that the solution core is almost self si
lar, close to the Townes mode, i.e., the explicit variations
the core versusz are disregarded. Second, the Townes mo
is approached by a Gaussian ansatz. These two approx
tions may contribute to discrepancies between numerics
analytical predictions.
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APPENDIX A: NUMERICAL METHOD

To accurately determine the collapse disstancez0 we must
use a numerical scheme that is capable of resolving the s
gradients and high amplitudes that arise in the beam pro
when z approachesz0. To meet this end, we integrate th
homogeneous version of Eq.~1!,

i
]c

]z
1

]2c

]x2
1

]2c

]y2
1ucu2c50, ~A1!

FIG. 10. Same as Fig. 8 withX(0)54.
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using a Crank-Nicholson scheme with adaptive integrat
step on a nonuniform grid.

In a nonuniform grid, the distance between adjacent g
points varies across the grid. The grid used here is built
structure composed of three zones; the inner propaga
zone, the outer propagation zone, and the radiation zone.
inner propagation zoneM1 is characterized byr P@0,R1@ ,
the outer propagation zone,M2, by r P@R1 ,R2#, and the ra-
diation zoneM by r P]R2 ,R], whereR1,R2,R. The dis-
tance between neighboring gridpoints inM1 is denotedr1
and is constant acrossM1. This is also true in the radiation
zoneM with r1 replaced byr. In the outer propagation zon
M2, which connectsM1 and M, the intergridpoint distance
changes smoothly fromr1 at r 5R1 to r at r 5R2. This way
of constructing the nonuniform grid is contrary to the a
proach where the distance between adjacent gridpoints i
lowed to change discontinously across one or more locat
in the grid.

When numerically solving Eq.~A1! on the nonuniform
grid, we transform the non-equidistantly positionedr grid-
points into a uniform grid, denoted theu grid. If the relation
betweenr andu is given by

u5F~r !,

r 5G~u!, ~A2!

then

FIG. 11. Same as Fig. 8 withX(0)55.
06661
n

-
a

on
he

-
al-
ns

f~u,z!5c„G~u!,z…. ~A3!

Insertion of Eqs.~A2! and ~A3! into Eq. ~A1! yields

i
]f

]z
1S 1

G~u!G8~u!
2

G9~u!

G8~u!3D ]f

]u
1

1

G8~u!2

]2f

]u2
1ufu2f

50. ~A4!

Solving the standard cubic NLSE on the nonuniformr grid is
thus equivalent to solving an NLSE withu-dependent coef-
ficients on the uniformu grid. For the transformation func
tion, G(u), we use

G~u!5au,uP@0,U1#,

G~u!5R11a~u2U1!1aS ~u2U1!6

30
2

DU~u2U1!5

10

1
DU

2 ~u2U1!4

12 D ,

FIG. 12. The half diametera and the heighte of the potential
are given by 2 and 0.1, respectively. The following initial cond

tions for R, Ṙ, L, L̇, and v are used:R(0)52, Ṙ(0)50, L(0)

52, L̇(0)50, and v(0)50.01. In the upper figure, the invers
width squaredB51/L2 is shown as a function ofz in dimensionless
units. In the middle figure, the magnitudeR of the centroid is de-
picted, and finally, the lower figure shows thez dependence ofv in
dimensionless units.
4-10
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COLLAPSE ARRESTING IN AN INHOMOGENEOUS TWO- . . . PHYSICAL REVIEW E 64 066614
uP@U1 ,U2#,

G~u!5R21b~u2U2!,uP@U2 ,U#, ~A5!

where

U15
R1

a
,

U25U11DU ,

U5U21
~R22R1!

b
,

a5
30~b2a!

DU
5

,

DU5
2~R22R1!

a1b
,

a

b
5

r1

r
. ~A6!

From the above relations, it is evident how the structure
the grid is uniquely determined fromR1 , R2 , R, r1, andr,
once eithera or b has been chosen as an arbitrary posit
number.

FIG. 13. Same as Fig. 12 withR(0)53.
06661
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As self-focusing sets in, the part of the beam that lies
the outer propagation zone atz50 gradually moves towards
the inner propagation zone with the high density of gr
points. Radiation, which in the process of self focusing
separated from the high-intensity part of the beam~the core!,
is allowed to freely disperse in the outer propagation zo
and the radiation zone. Once the major part of the beam m
is located inM1, the beam width has decreased significan
and the Crank-Nicholson integration scheme requires a s
integration step due to the high amplitudes and steep gr
ents. To meet this end, the integration stepDz is allowed to
adapt to the shape of the envelope function. Letucumax at z
5z1 be defined as

ucumax5max$ucu,r P@0,R#,z5z1%. ~A7!

To first order in the integration stepDz , c changes fromz
5z1 to z5z11Dz , according to

Dc5 i S 1

r

]c

]r
1

]2c

]r 2
1ucu2c D U

z5z1

Dz . ~A8!

Dc is everywhere in ther domain required to obey the
relation

FIG. 14. Same as Fig. 12 withR(0)55.
4-11
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uDcu
ucumax

,g, ~A9!

whereg is a small parameter specifying the allowed chan
in c. From Eq.~A7! and Eq.~A8!, an upper bound forDz is
found

Dz5minH gucumax

U1r ]c

]r
1

]2c

]r 2
1ucu2cU

z5z1

,r P@0,R#J .

~A10!
s

is

n

a

io

06661
e

In order to limit the possibility for zero in the denominato
the inequality Eq.~A10! is strengthened by requiring

Dz5minH gucumax

S U 1

r

]c

]r
1

]2c

]r 2 U1ucu3D U
z5z1

,r P@0,R#J .

~A11!

On the uniformu grid, Eq. ~A11! reads
Dz5minH g max$ufu,uP@0,U#,z5z1%

S U2
G9~u!

G8~u!3

]f

]u
1

1

G8~u!2

]2f

]u2 U1ufu3D U
z5z1

,uP@0,U#J . ~A12!
ar-
ht

is

ge
f

Next, we apply the algoritm to a beam with initial condition
given by

c~x,y,z50!5Ae2(x21y2/2w2), ~A13!

whereA52 andw50.975. The NLSE, Eq.~A1!, is solved
on a grid characterized byR150.02, R252.09, R520.87,
a/b51/160, andg50.025. The Crank-Nicholson solver
iterated untilz55.45 where the amplitude atr 50 is 159.7,
an eighty times increase of the initial amplitude. The nonu
form grid is not capable of resolving the steep gradients inc
beyond this propagation distance, and we thus approxim
the collapse distancez0 with the propagation distancez
55.45.

APPENDIX B: RADIATION RATE

In this appendix, we derive an equation for the radiat
rate for the core mass. We look for the solution of Eq.~33! in
the form

F~jW ,z!5x~jW !ei dz, ~B1!

where the eigenvalued and the shape functionx are deter-
mined from the equation

2¹j
2x1U~jW !x5lx,

U~jW !5Uc~jW !1Uf~jW !, ~B2!

Uc~jW !52uFu2, ~B3!

Uf~jW !52
1

4
bj21 fWjW , ~B4!
i-

te

n

where l5212d, fW5(1/2)RẄ L3 is the inertial force. It is
seen that the potentialU(jW ) consists of parts with strongly
different interaction ranges:Uc(jW ) is a short-range radially
symmetric potential of radiusjg ~which is the radius of the
ground-state Townes soliton! andUf(jW ) describes the action
of the centrifugal force@(1/4)bj2#, inertial force (fWjW ). We
omitted the inhomogeneity potential@L2 V(LjW1RW )# in the
potentialU(jW ) because due to its weakness and narrow ch
acter@see Eq.~7!# it does not change significantly the heig
and width of the potential profileU(jW ). We are looking for
solutions of the eigenvalue problems~B2!–~B4! under out-
going wave boundary condition. In this case, this problem
not self adjoint and the eigenvaluesl may be complex. It
was shown in@21# ~see also@22#! that in the limit of small
jg , the equation for eigenvalues has the form

lim
jW→0

lim
h→10

E
0

`

@G0~jW ,tu0,0!eil0t2Gf~jW ,tu0,0!eilt#e2htdt

50, ~B5!

where l0 is an unperturbed eigenvalue in the short-ran
potential~B3!. In our case,l0521 is the eigenfrequency o
the ground-state Townes soliton.G0(jW ,tujW8,t8) is the Green
function of free motion. It satisfies the equation

S i
]

]t
1¹jW

2DG0~jW ,tujW8,t8!5 id~ t2t8!d~jW2jW8!, ~B6!

and in the two-dimensional case has the form@23#

G0~jW ,tujW8,t8!52
1

2p~ t2t8!
expH i

~jW2jW8!2

2~ t2t8!
J . ~B7!
4-12
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The Green functionGf(jW ,tujW8,t8) satisfies the equation

S i
]

]t
1¹jW

2
2Uf~jW ! DGf~jW ,tujW8,t8!5 id~ t2t8!d~jW2jW8!

~B8!

and describes the motion in the field of inertial forces~B4!.
The potential~B4! is quadratic. Therefore, the Green fun
tion may be calculated explicitly@23# and in the two-
dimensional case, may be represented as follows:

Gf~jW ,tujW8,t8!52
A2b

2p sinA2b~ t2t8!
eiS(jW ,tujW8,t8),

~B9!

where

S~jW ,tujW8,t8!5
A2b

2 sin„A2b~ t2t8!…

3F S jW21jW821
2

b
fW~jW1jW8!1

2

b2
fW2D

3cos„A2b~ t2t8!…

22S jWjW82
1

b
fW~jW1jW8!1

fW2

b2D 2
fW2

2b
~ t2t8!G

~B10!

is the classical action

S~jW ,tujW8,t8!5E
t8

t

L~t!dt, ~B11!

whereL5(1/4)j̇22Uf is the classical Lagrangian function
Inserting Eqs.~B7!, ~B9!, and~B10! into Eq. ~B5! we get

lnS l0

l D52pE
0

`

g~ t !eilt dt, ~B12!

with

g~ t ![Gf~0,tu0,0!2G0~0,tu0,0!

5
1

4p t X12
A2b t

sinA2b~ t2t8!

3expH 2 i
2 fW2

bA2b
SA2bt

2
2tan

A2bt

2 D J C.
~B13!

The escape rateg is defined as the imaginary part of th
eigenvalued. In the weak inertial and centrifugal forces lim
the escape rate is determined by the expression

g522p ImE
0

`

g~ t !e2 i t dt. ~B14!
06661
The escape process for positive and negativeb is differ-
ent. One may therefore represent the rateg as the sum

g5u~b!g11u~2b!g2 , ~B15!

whereg1(g2) is the escape rate in the case of positive~ne-
gative! centrifugal forceb. Whenb.0 Eq. ~B14! takes the
form

g152
p

4
1I ~n,a!, ~B16!

I ~n,a!5ImE
0

` exp$ in~u2a tanhu!%

sinh~2u!
du, ~B17!

where

n52
f 21b

bAb
, a5

f 2

f 21b
. ~B18!

When

0,b; f 2!1, ~B19!

the parametern@1. To evaluate the integral~B17!, we use
the method of steepest descents. To this end, we first de
the original integration pathC that runs from 0 tò along
the realu axis, to the contour in the complex (u,v) plane that
consists of six components:C1 andC5, which are the quarter
of circles of the infinitesimally small radiuse, surrounding
the points (0,0) and (0,ip), respectively;C2 andC4, which
run along the imaginaryv axis from i e to i v0 and from
i (p2v0) to i (p2e), respectively; the contourC3, which is
determined by the equation

cos2 v5a
sinh 2u

2u
2sinh2 u, ~B20!

with

0<u<u0 , v0<v<p2v0 , ~B21!

wherev05arccosAa and the parameteru0 is determined by
the equationu0tanh u05a; and C6, which runs parallel to
the realu axis from the point (e,ip) to (`,ip). The contour
C3 is the steepest-descent path. It was chosen in the f
~B20! to have Im(z2a tanhz)50, z5u1 iv. The integral
under consideration may be represented as the sum

I ~n,a!5(
j 51

6

I j~n,a!,

I j~n,a!5ImE
Cj

exp$ in~z2a tanhz!%

sinh~2z!
dz. ~B22!

It is easy to see that
4-13
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I j~n,a!55
p

4
if j 51,

0 if j 52 and 4,

p

4
e2np if j 55,

I ~n,a! e2np if j 56.

Thus, from Eq.~B16!, we get

g15
1

12e2np S p

2
e2np1I 3~n,a! D . ~B23!

The integral on the steepest-descent pathI 3(n,a) may be
represented as the sum

I 3~n,a!5S E
v0

p/2

1E
p/2

p2v0D
3

sinh 2u cos 2v2
du

dv
cosh 2u sin 2v

sinh2 2u1sinh2 2v
e2nP(v) dv

[I 38~n,a!1I 39~n,a!, ~B24!

where

P~v !5v2a
sin 2v

cos 2v1cosh 2u
, ~B25!

and the dependenceu(v) is given by Eq.~B20!. The function
~B25! is monotonic in both intervals of integration. Ther
fore, one may evaluate the integralsI 38(n,a) andI 39(n,a) for
n@1 by using the Laplace method~see, e.g.,@24#!. In the
leading approximation~neglecting the small termse2n) we
get

g1'I 38~n,a!1I 39~n,a!, ~B26!

where

I 38~n,a!.
1

4
p1/2a21/4~12a!23/4n21/2

3erf~n1/2a21/4~12a!1/4u0!

3exp$2n~arccosAa2Aa~12a!!%,

~B27!

I 39~n,a!.
1

~2u01sinh 2u0!n

3S 12expH 2nS 11
2u0

sinh 2u0
D

3arcsinAaJ DexpH 2
np

2 J , ~B28!

where erf(x)5(2/Ap)*0
xe2z2

dz is the error function@19#.
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In the limit of vanishing inertial forcefW ,

a→0, n→2 b23/2, ~B29!

and

I 385I 39.
1

2
e2(p/Ab). ~B30!

Thus, the escaping rate is controlled by the centrifugal fo
b and its form

g1.e2(p/Ab) ~B31!

is the same as in the case of the homogeneous nonli
Schrödinger equation@13–16#. When the centrifugal forceb
is small

a→1, n→2 fW2b23/2 ~B32!

and

I 38.Apu fW u
32

expH 2
4

3u fW uJ , I 39;
b3/2

u fW u2
expH 2

pu fW u2

b3/2 J ,

~B33!

and the escaping rate~B23! is mainly determined by the
inertial force fW

g1.Apu fW u
32

expH 2
4

3u fW uJ . ~B34!

Let us consider now the case of negative centrifugal fo
b. It is worth noticing that in contrast to the previous ca
when the potentialU(jW ) was unbounded from below, th
hermicity of the Hamiltonian~B2! could be violated by using
as a boundary condition foruju→` only outgoing waves, in
the case ofb,0, the functionU(jW ) represents an asymme
ric double-well potential. For this case, the concept of
escape rate as an imaginary part of the energy of the par
is obviously not correct. A particle located in the well creat
by the potential~B3! tunnels to the parabolic well~B4! and
will return back to the first well in a finite-time interval. Thi
back-and-forth motion causes the energy shift but not
escape rate.

In the case under consideration, when the parabolic w
is almost flat~super criticality is small! and the potential

barrier that separates the wells is broad~inertial forceL3RẄ is
weak! one may neglect bouncing of the particle from t
opposite side of the parabolic potential well. In this appro
mation, one may again introduce the notion of the esc
rateg2 but the Eq.~B14! takes now the form
4-14
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g252
p

4
2ImE

0

T A2b

sin~2b!t

3expH 2 i
2 fW2

bA2b
SA2bt

2
2 tan

A2bt

2 D J dt

52
p

4
1ImE

0

p/2 e2 in(u2a tanu)

sin 2u
du, ~B35!

whereT5(p/A2b) is the time of the first bounce that is o
course the half period of oscillations in the parabolic w
and the parametersn anda are given by Eq.~B18!.

To evaluate the integral in Eq.~B35!, we use the method
of steepest descents. Here, the original integration patC
that runs from 0 top/2 along the realu axis, to the contour
in the complex (u,v) plane that consists of six componen
C1, which is the quarter of circle of the infinitesimally sma
radiuse, surrounding the points (0,0);C2 , which runs along
the imaginaryv axis from i e to i v1[ i arccoshAa; and the
steepest-descent contourC3 which is determined by the
equation

sinh2 v5a
sin 2u

2u
2cos2 u. ~B36!

Note that here the parametera.1, because only under thi
condition the bottom of the parabolic well is lower than t
energy level in the potential~B3! (l0521) and tunneling to
the parabolic well may occur. Proceeding in the same wa
in the case of positiveb, we obtain that the escape rate~B35!
may be represented as follows:

g25u~a21!
1

4
Ap

n S a

a21D 3/4

3erfXp2 n1/2S a21

a D 1/4Ce2n„A(a21)a2arcsinhAa21….

~B37!

In the limit, when the cenrifugal force is weak, Eq.~B37!
takes the form
ys

v

,

.

06661
l

as

g25u~a21!Apu fW u
32

expH 2
4

3u fW uJ , ~B38!

which coincides with Eq.~B34! obtained for the case of pos
tive b.

Combining Eqs.~B15!, ~B26!, ~B27!, ~B28!, and ~B37!,
we get

g5u~b!g11u~2b!g2 . ~B39!

g15
1

4
Ap~ f 21b!

2 f
erfS m

~ f 21b!

A2b f
D expH 22

f 21b

bAb
Fp

2

2
fAb

f 21b
2arcsinS f

Af 21b
D G J

1
bAb

2~ f 21b!~m1sinhm!
S expH 2p

f 21b

bAb
J

2expH 22
f 21b

bAb
Fp

2
1S 11

m

sinh~m! D
3arcsinS f

Af 21b
D GJD , ~B40!

g25u~ f 22ubu!
Ap

4
A f 3

2~ f 22ubu!
erfS pAf 22ubu

2 f ubu D
3expH 2

2

ubu S f 2
~ f 22ubu!

Aubu
arcsinhF Aubu

Af 22ubu
G D J ,

~B41!

where the notation

m[
2A3 f

A2 f 213b
~B42!

is used.
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